CLASS-V-দাগ নাম্বার – 4 & 5-Annual Examination—2021/MODEL QUESTION SOLVED/Mathematics

 Annual Examination—2021

 
MODEL QUESTION SOLVED-দাগ নাম্বার -4 & 5
 
Class — V
 
Subject : Mathematics
 
………………………………………………………………………………………………..
 

সমাধানঃ 
সত্য

সমাধানঃ  সত্য
আয়তকার মাঠের পরিসীমা = 360 মিটার
আয়তকার মাঠের দৈর্ঘ্য =100 মিটার
আয়তক্ষেত্রের পরিসীমা = 2 (দৈর্ঘ্য +প্রস্থ )
\therefore
360 মিটার  = 2 (100 মিটার + প্রস্থ )
\Rightarrow 360 মিটার = 200 মিটার + 2 \times প্রস্থ
\Rightarrow  2 \times
প্রস্থ = (360 -200 ) মিটার
\Rightarrow   প্রস্থ = \frac {160}{2} মিটার = 80 মিটার
সমাধানঃ  মিথ্যা
200+3+\frac{4}{10}+\frac{1}{1000}\\\\=203+0.4+0.001\\\\=203.401
সমাধানঃ  সত্য 
বাঁশের মোট দৈর্ঘ্য = 14.09 মিটার
কাদায় ও জলে আছে মোট = (4.2+3.01) মিটার = 7.21 মিটার
কাদার ও জলের উপরে আছে = (14.09-7.21)  মিটার = 6.88 মিটার
সমাধানঃ  সত্য 
ইয়াসিন 200 টাকায় কিনে 1000 গ্রাম চা
ইয়াসিন 1 টাকায় কিনবে  \frac{1000}{200} গ্রাম চা
ইয়াসিন 50 টাকায় কিনবে \frac{1000}{200} \times 50 গ্রাম চা = 250 গ্রাম চা
সমাধানঃ 
মিথ্যা
 
কাজের পরিমাণ নির্দিষ্ট থাকলে নাঙলের সংখ্যার সঙ্গে দিন সংখ্যা ব্যস্ত সম্পর্ক 

সমাধানঃ সত্য 

6\times 5\times 4\div 8\div 5\times 7\\\\=120\div 8\div 5\times 7\\\\=15\div 5\times 7\\\\=3\times 7=21

সমাধানঃ সত্য

\frac{1}{2}\times 3\frac{1}{3}-\frac{5}{6}\div 1\frac{1}{9}\\\\=\frac{1}{2}\times \frac{10}{3}-\frac{5}{6}\div \frac{10}{9}\\\\=\frac{1}{2}\times \frac{10}{3}-\frac{5}{6}\times \frac{9}{10}\\\\=\frac{5}{3}-\frac{3}{4}\\\\=\frac{20-9}{12}=\frac{11}{12}

সমাধানঃ মিথ্যা 

1 আর = 100 বর্গ মিটার
5 আর = 500 বর্গমিটার

সমাধানঃ মিথ্যা 
\frac{3}{5}\times \frac{5}{3}=1

সমাধানঃ সত্য

2\frac{1}{3}+\frac{2}{3}\\\\=\frac{7}{3}+\frac{2}{3}\\\\=\frac{7+2}{3}=\frac{9}{3}=3 
 

সমাধানঃ  মিথ্যা
0.231=\frac{231}{1000}, 0.32=\frac{32}{100}, 0.5=\frac{5}{10}\\\\\therefore 0.231=\frac{231}{1000}\\\\0.32=\frac{320}{1000}\\\\0.5=\frac{500}{1000}
সবথেকে ক্ষুদ্রতম সংখ্যাটি হল = 0.231 
 

সমাধানঃ  সত্য

 

সমাধানঃ  সত্য

 

সমাধানঃ  মিথ্যা 
তিনটি বাহু দ্বারা ত্রিভুজ অঙ্কন সম্ভভ হবে যদি, যে কোন দুটি বাহুর যোগফল তৃতীয় বাহুর থেকে যদি বড়ো হয়
3+4\ngtr 8
 

সমাধানঃ 
ধরি, চৌবাচ্চার মোট অংশ = 1 অংশ
চৌবাচ্চায় আগে থেকে জল ছিল \frac{2}{15} অংশ
আমি চৌবাচ্চায় জল ঢাললাম = \frac{3}{20} অংশ
দাদা জল ঢালল =  \frac{3}{12} অংশ
এখন চৌবাচ্চায় মোট জলের পরিমাণ = \frac{2}{15}+\frac{3}{20}+\frac{3}{12}\\\\=\frac{8+9+15}{60}\\\\=\frac{32}{60}\\\\=\frac{8}{15}
\therefore এখন চৌবাচ্চায় খালি আছে =(1-\frac{8}{15})\\\\=\frac{15-8}{15}\\\\=\frac{7}{15}
 

সমাধানঃ 
আয়তকার মাঠের পরিসীমা = 256 মিটার
আয়তকার মাঠের দৈর্ঘ্য =74 মিটার
আয়তক্ষেত্রের পরিসীমা = 2 (দৈর্ঘ্য +প্রস্থ )
\therefore 256 মিটার  = 2 (74 মিটার + প্রস্থ)
\Rightarrow 256 মিটার = 148 মিটার + 2 \times প্রস্থ
\Rightarrow  2 \times প্রস্থ  = (256 -148 ) মিটার
\Rightarrow প্রস্থ = \frac {108}{2} মিটার = 54 মিটার
\therefore আয়তকার মাঠের ক্ষেত্রফল =\left ( 74\times 54 \right ) বর্গমিটার
                                                                    = 3996 বর্গমিটার
সমাধানঃ
7-\frac{3}{4}\div \frac{1}{6} এর \frac{9}{14}
7-\frac{3}{4}\div \frac{1}{6}\times \frac{9}{14} \\\\=7-\frac{3}{4}\div \frac{3}{28}\\\\=7-\frac{3}{4}\times \frac{28}{3}\\\\=7-7=0

সমাধানঃ
\frac{1}{3}\times নির্ণেয় সংখ্যা –\frac{1}{5}\times নির্ণেয় সংখ্যা = 30
\Rightarrow নির্ণেয় সংখ্যা \times \left ( \frac{1}{3}-\frac{1}{5} \right ) =30
\Rightarrow নির্ণেয় সংখ্যা \times\left ( \frac{5-3}{15} \right )=30
\Rightarrow নির্ণেয় সংখ্যা =30\times \frac{15}{2}=225

সমাধানঃ
ভগ্নাংশটি 1\frac{1}{3} অপেক্ষা যত বড়ো, 3\frac{4}{5} অপেক্ষা তত ছোট ,
\therefore নির্ণেয় ভগ্নাংশ –  1\frac{1}{3}3\frac{4}{5} -নির্ণেয় ভগ্নাংশ
\Rightarrow 2\times নির্ণেয় ভগ্নাংশ =  3\frac{4}{5} + 1\frac{1}{3}
\Rightarrow 2\times নির্ণেয় ভগ্নাংশ= 3\frac{4}{5} + 1\frac{1}{3}\\\\=\frac{19}{5}+\frac{4}{3}\\\\=\frac{57+20}{15}\\\\=\frac{77}{15}
\Rightarrow নির্ণেয় ভগ্নাংশ =\frac{77}{30}=2\frac{17}{30}

সমাধানঃ 
ধরি, দুটি খণ্ডকে একটি কে প্রথম খণ্ড আর অন্যটি কে দ্বিতীয় খণ্ড
\therefore দ্বিতীয় খণ্ড = \frac{3}{11} \times প্রথম খণ্ড
প্রশ্নানুসারে,
প্রথম খণ্ড + দ্বিতীয় খণ্ড = 168 গজ
\Rightarrow প্রথম খণ্ড + \frac{3}{11} \times প্রথম খণ্ড  = 168 গজ
\Rightarrow প্রথম খণ্ড\times (1 + \frac{3}{11}) = 168 গজ
\Rightarrow প্রথম খণ্ড\times \frac{14}{11} = 168 গজ
\Rightarrow প্রথম খণ্ড =( 168 \times \frac{11}{14})গজ
\Rightarrow প্রথম খণ্ড = (168 \times \frac{11}{14})গজ = (12 \times11) গজ =132 গজ
\therefore দ্বিতীয় খণ্ড টি = \frac{3}{11} \times 132=3 \times11=36 গজ
 

সমাধানঃ 
ধরি, মোট সম্পত্তির পরিমাণ = 1 অংশ
সম্পত্তির \frac{3}{4} অংশ =  1 এর \frac{3}{4} অংশ = \frac{3}{4}  অংশ
সম্পত্তির \frac{3}{4} অংশের মূল্য 3300 টাকা
সম্পত্তির 1 অংশ = সমগ্র অংশের মূল্য = (3300 \times \frac{4}{3}) টাকা = (1100 \times 4) টাকা = 4400 টাকা
সম্পত্তির \frac{5}{11} অংশের মূল্য = (4400 \times \frac{5}{11}) টাকা = 2000 টাকা

সমাধানঃ 
1\frac{3}{5}2\frac{3}{10} এর সমষ্টি = 1\frac{3}{5}+2\frac{3}{10}\\\\=\frac{8}{5}+\frac{23}{10}\\\\=\frac{16+23}{10}\\\\=\frac{39}{10}
\frac{3}{4}\frac{1}{10}  এর অন্তর = \frac{13}{20}
1\frac{3}{5}2\frac{3}{10} এর সমষ্টির মধ্যে \frac{3}{4}\frac{1}{10} এর অন্তর কত বার আছে তা হল = \frac{39}{10}\div \frac{13}{20}\\\\=\frac{39}{10}\times \frac{20}{13}=6

সমাধানঃ 
বস্তায় মোট আলুর পরিমাণ \times \frac{1}{3}- বস্তায় মোট আলুর পরিমাণ \times \frac{1}{12}=30 কেজি
\Rightarrow বস্তায় মোট আলুর পরিমাণ \times \left ( \frac{1}{3} -\frac{1}{12}\right )= 30 কেজি
\Rightarrow বস্তায় মোট আলুর পরিমাণ \times \left ( \frac{4-1}{12}\right )=30 কেজি
\Rightarrow বস্তায় মোট আলুর পরিমাণ \times \left ( \frac{1}{4}\right )=30 কেজি
\Rightarrow বস্তায় মোট আলুর পরিমাণ = \left ( 30\times 4 \right ) কেজি
\therefore বস্তায় মোট আলুর পরিমাণ = 120 কেজি
 

সমাধানঃ 
100 বর্গ ডেসিমিটার = 1 বর্গ মিটার
আয়তক্ষেত্রের কালি / ক্ষেত্রফল = 18 বর্গমিটার 60 বর্গ ডেসিমিটার = (18\times 100+60) বর্গ ডেসিমিটার= 1860 বর্গ ডেসিমিটার
আয়তক্ষেত্রের কালি / ক্ষেত্রফল = দৈর্ঘ্য \times প্রস্থ
আয়তক্ষেত্রের প্রস্থ = 3 মিটার = 30 ডেসিমিটার
 আয়তক্ষেত্রের দৈর্ঘ্য = \left ( 1860\div 30 \right ) ডেসিমিটার= 62  ডেসিমিটার= 6.2 মিটার

সমাধানঃ 
1 গজ = 3 ফুট
6 গজ = 18 ফুট
18 ফুট বর্গ উঠানের ক্ষেত্রফল = \left ( 18\times 18 \right ) বর্গফুট = 324 বর্গফুট
3 ফুট বর্গ টালির ক্ষেত্রফল = 9 বর্গফুট
টালি দিয়েউথন্তি ঢাকতে মোট টালি লাগবে = \left ( 324\div 9 \right ) টি = 36 টি

সমাধানঃ 
1 আর = 100 বর্গ মিটার
1.44 আর = 144 বর্গমিটার
বর্গ ক্ষেত্রের ক্ষেত্রফল =  144 বর্গমিটার
বর্গ ক্ষেত্রের একটি বাহুর দৈর্ঘ্য = \sqrt{144} মিটার = 12 মিটার
বর্গক্ষেত্রের পরিসীমা = \left ( 12\times 4 \right ) মিটার = 48  মিটার
 

সমাধানঃ 
আয়তক্ষেত্রের প্রস্থ = 16 মিটার
আয়তক্ষেত্রের দৈর্ঘ্য = \left ( 16\times \frac{3}{2} \right ) মিটার = 24 মিটার
 আয়তক্ষেত্রের পরিসীমা = 2 (দৈর্ঘ্য +প্রস্থ )
\therefore  পরিসীমা = 2 (24+ 16)  মিটার = 80 মিটার
 

সমাধানঃ 
32\div 4\times (4-2)-32\div 4(4-2)\\\\=32\div 4\times (4-2)-32\div 8\\\\=32\div 4\times 2-4\\\\=8\times 2-4\\\\=16-4=12
 

সমাধানঃ 

আয়তকার পার্কের দৈর্ঘ্য = 25 মিটার

আয়তকার পার্কের প্রস্থ = 15 মিটার
আয়তকার পার্কের পরিসীমা = 2 (দৈর্ঘ্য +প্রস্থ ) একক
                                              = 2\times (25+15) মিটার = 80 মিটার
প্রত্যেক ধারের দৈর্ঘ্য 2 মিটার করে বাড়ানো হলে  পার্কের দৈর্ঘ্য হবে = 27 মিটার
আয়তকার পার্কের প্রস্থ হবে  = 17 মিটার
আয়তকার পার্কের পরিসীমা হবে = 2 (দৈর্ঘ্য +প্রস্থ ) একক
                                          = 2\times (27+17) মিটার = 88 মিটার
\therefore আয়তকার পার্কের পরিসীমা আগের থেকে বেশি হবে= ( 88- 80 ) মিটার = 8 মিটার
 

সমাধানঃ 
গণিতের ভাষায় সমস্যাটি হলঃ
             লোক সংখ্যা                      দিন সংখ্যা
                  21                                    40
      (21-7) = 14                                    ?
 21 জন লোক 40 দিনে পুকুরটি খনন করতেপারে
1 জন লোকের পুকুরটি খনন করতে সময় লাগবে =  (21 \times 40) দিন = 840 দিন
14 জন লোকের পুকুরটি খনন করতে সময় লাগবে =  \frac{840}{14} দিন = 60 দিন
 
 

সমাধানঃ 
গণিতের ভাষায় সমস্যাটি হলঃ
             মুরগির সংখ্যা                      দিন সংখ্যা
                  4000                                   250
      (4000+1000) = 5000                         ?
 মজুত খাবার 4000 টি মুরগির চলবে 250 দিন
মজুত খাবার 1 টি মুরগির চলবে =  (4000 \times 250) দিন = 10000000 দিন
মজুত খাবার 5000 টি মুরগির চলবে =  \frac{10000000 }{5000} দিন = 200 দিন
 

সমাধানঃ 
গণিতের ভাষায় সমস্যাটি হলঃ
             দূরত্ব (মিটার )               চাকা ঘুরার পরিমাণ (বার)
                 170                                    51
                 1700                                  ?
 চাকা টি 170 মিটার যেতে 51 বার ঘুরে
 চাকা টি  1 মিটার যেতে ঘুরবে =  \frac{51}{170} বার
চাকা টি 1700  মিটার যেতে ঘুরবে =  \frac{51}{170}\times 1700  বার = 510 বার
 

সমাধানঃ 
চৌবাচ্চায় প্রথমে জল ছিল = \frac{3}{8} লিটার
সেখান থেকে \frac{8}{25}  লিটার জল খরচ হয়েছে
খরচ হওয়ার পর এখন চৌবাচ্চায় জল আছে = \left ( \frac{3}{8}-\frac{8}{25} \right ) লিটার = \frac{11}{200} লিটার
আমি বালতি করে চৌবাচ্চায় আরও  \frac{5}{16} লিটার জল ঢাললাম
\therefore এখন চৌবাচ্চায় জল থাকবে= \left ( \frac{11}{200}+\frac{5}{16} \right ) লিটার
                                                            = \left ( \frac{22+125}{400} \right )  লিটার = \frac{147}{400} লিটার

সমাধানঃ 
25074.035=2\times 10^4+5\times 10^3+0\times 10^2+7\times 10+4\times 10^0+0\times 10^{-1}+3\times 10^{-2}+5\times 10^{-3}
 

মডেল প্রশ্ন দাগ নাম্বার -১ এর লিঙ্ক : 

  CLASS-V-Annual-Question-7-solved

https://www.sdtutoronline.com/2021/11/class-v-math-sample-questions-solved.html

এই ব্লগ সাইটটির আরও উন্নতির জন্যে সকলের কাছে থেকে যেকোনো ধরনের পরামর্শ সাদরে গ্রহন করা হবে।  
 
 

পরের দাগের অঙ্কগুলি পরের পোস্টে দেওয়া হবে।

Spread/ share this post

1 thought on “CLASS-V-দাগ নাম্বার – 4 & 5-Annual Examination—2021/MODEL QUESTION SOLVED/Mathematics”

Leave a Comment